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ABSTRACT

A model of the dynamics of a long trailing-wire antenna
towed behind an orbiting aircraft was developed and then an
investigation was made of several candidate schemes to
control the wire's steady-staie suape and oscillations due
to wind gradients. A computer simulation was developed
using the classic vibrating chain with free/fixed boundary
conditions superimposed upon the wire's steady-state shape
and tension distribution. Several forms of restorative and
dissipative forces were considered in the analysis. The
validity of the superposition approach was demonstrated for
a wide operating range. A control law was developed which
modulated the towplane orbit radius and Jdemonstrated a
potential for a 50 percent or better reduction in all
oscillations. A second scheme using a controllable drogue
at the trailing end of the wire was investigated. The
controllable drogue had a limited success in oscillation
reduction, but was found useful in tailoring the steady-

state shape of the wire.
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I. INTRODUCTION

There are a number of current and proposed uses for long
cables or wires towed behind ships and aircraft. As
examples, antisubmarine warfare ships tow long cables with
acoustic equipment attached along the cable length for the
purposes of isolating the equipment from the ship's noise
sources, for penetrating temperature and salinity layers
beneath the ocean surface and for providing a long baseline
for passive acoustic ranging. A precise knowledge of the
real time cable shape is required to determine the time
dependent location of the sensors attached to the cable.
Payne discusses the need for a knowledge of the cable shape
during ship maneuvers and provides a bibliography of work
done to model the dynamics of towed arrays. [(Ref. 1]
Several classes of aircraft trail long communications
antennas required for low frequency/long distance
communications. One interesting proposed application is to
use a long cable towed from an orbiting cargo airplane to
provide pinpoint airborne delivery of cargo. It will be
seen later that this is possible due to the shape that the
wire/cargo combination obtains when the towplane is in a
steady-state orbit. [Ref. 2:p. 856] All of these
applications share the same basic physics which are adapted

and modified to study the individual case. Wire




oscillations and subsequent wire failures are problems
common to many towed wire applications. It is the intent of
this paper to focus upon the case of a cable and drogue
system towed behind an airplane flying a circular orbit.
Irvine and Caughey [Ref. 3] provide an in-depth analysis
of the vibrations of a cable which is fixed at both ends.
This work is good background for the development of the
governing equations of the towed wire. Anderson [Ref. 4]
extends this work and analyzes the effects of the fluid and
wire structure upcn the vibrations. Skop and Choo [Ref. 2]
provide an in-depth study of the equilibrium configuration
of a cable towed behind a towplane flying a circular orbit
as well as a discussion of the multi-valued nature of the
governing equations. Anderson's student, Russell, continued
this wuik in hi. dissertation [Ref. £]. Matteis [Ref. 6]
analyzed the dynamics of a sailplane while attached to the

towplane. Matteis' discussion provides insight into the

development of a model of the drogue on the end of thc wir

1)

The work mentioned above emphasizes the analytical
solutions. The first thorough numerical model of the
steady-state solution of the towed wire problem was provided
by Huang [Ref. 7]. This report does an excellent job of
outlining the algebraic and partial differential equations
required to develop a computer simulation of the wire in a
steady-state orbit but lacks a complete description of the

numerical schemes employed. There is no documentation for




the software. Huang's paper was the basis upon which the
static computer simulation in this dissertation was based.
Crist [Ref. 8] developed the first computer simulation of
the dynamics of the towed wire. The formulation of the
problem and the numerical scheme limits the model of the
wire to very long, lumped mass grid segments. The
application of Crist's program has typicalliy been limited to
the analysis of wire dynamics during the reeling-in and
reeling-out process. Fidelity has been a problem when
applying the program to the analysis of the dynamics of the
extended wire, for this reason, this dissertation emphasizes
the orbiting phase of flight following reel-out. Finally,
Lawton [Ref. 9] outlined a series of experiments performed
onboard an EC-130 TACAMO airplane. Additionally, he made
the suggestion of using the towplane as a trailing wire
contrul device and documented deficiencies in the tension
measurement equipment. This paper was the starting point
for much of the wire control wzrk done in this dissertation.
The most current and pressing application of the study
of towed cables and drogues is the TACAMO. For this reason,
the TACAMO confiquration and physical parameters were chosen
for use in this dissertation. Where possible, the modeling
was kept as general as possible to allow application of the

developed techniques to other problems.




II. BACKGROUND

The problem of understanding the dynamics of a very long
cable towed behind an aircraft has plagued the United States
Navy for decades. A very long wire, on the order of 15,000
to 25,000 feet, is towed in a circular orbit behind the
TACAMO strategic communications aircraft for use as a Very
Low Frequency (VLF) antenna. A hollow, cone shaped drogque,
with a weighted nose, is attached to the end of the wire for
the advertised purpose of providing aerodynamic
stabilization during the r=el-out and reel-in process. The
first TACAMO platforms were modified C-130 aircraft
designated the EC-130. 1In 1971 the wire was changed from a
0.21 inch to a 0.16 inch diameter wire in order to reduce
wire weight, drag and tension at the towplane. The change
caused wild oscillations in tension and wire shape resulting
in another switch to a stronger cable. 1In 1987 the EC-130
was replaced by the E-6A, a Boeing 707 variant. The
oscillations experienced by the E-6A were more severe and
several different wires and drogues were flight tested in an
attempt to reduce the oscillations to an acceptable level.
The success of this trial and error effort has been limited.

Oscillations in the trailing wire antenna result in
three critical problems. First, the oscillations can cause

contact between the wire and the towplane's horizontal tail.




The wire exits the towplane at a point in the lower fuselage
approximately 45 feet forward of the tip of the towplane
tail. During the oscillations the wire transcribes the
approximate shape of a cone and as it rotates it often rubs
the horizontal tail and flight control surfaces. There are
three hacards associated with wire/aircraft contact. Most
seriously, there is a possibility of fouling flight control
surfaces. Next, abrasion of the aircraft structure leads to
reliability and maintenance concerns. Lastly, abrasion of
the wire leads to wire failure with the associated financial
costs and the incumbent surface hazards from 20,000 feet of
falling wire.

The se-ond problem is that the oscillations in wire
tension often result in exceeding the failure strength of
the wire. This too causes the wire to part and fall to the
surface. There are currently two types of wire in use. The
older wire consists of 15 smaller steel wires wrapped in a
single copper band in carndy stripe fashion. This wire is
commonly known as 1X15 due to its structure. The newer wire
consists of 3 sets of wires wrapped in a 0.1582 inch
diameter braid at approximately a 1.87 inch pitch. Each set
consists of 6 wires symmetrically set around a seventh wire,
all in a copper matrix. This wire is known as 3X7 wire.

The old wire fails at approximately 2500 pounds of tension

and the new wire at approximately 3000 pounds. The new wire




would be preferred due to its higher strength, however, the
observed oscillations while using it are¢ more severe.

The third problem caused by the oscillations is the
significant degradation in the TACAMO's ability to perform
its mission caused by the oscillations. Verticality is
defined as the altitude of the towplane less the altitude of
the drogue divided by the length of the wire. Thus a 100
percent verticality requires the wire to be perfectly
vertical below the towplane. Since the wire is an antenna,
transmission efficiency is a function of the trailing wire's
shape. Verticality is a direct measure of the wire's
ability to act as an antenna. As t’ =2 verticality decreases
below 60 percent or 70 percent, the transmitted power is
drastically reduced. Oscillations that result in low
verticality during portions of the cycle are evidenced by
large oscillations in the voltage at the power amplifier and
the signal received at test ground stations. The TACAMO is
flown in a circular orbit with a bank angle on the order of
20 degrees to 40 degrees. 1In this orbit, the wire assumes
the approximate shape of a helix with a smaller radius at
the drogue than at the towplane. The wire typically makes %
to a full turn in the helix shape from top to bottom.

Flight test data shows that the oscillations occur at a
frequency equal to the orbit rate of the towplane. The
period is thus on the order of 100 to 200 seconds.

Furthermore, the system requires from 2 to 30 minutes to




transmit a message and approximately 20 minutes to set up an
orbit and trail the wire. It is thus crucial that the
verticality be controlled over long periods of time. A
short burst while the wire is at high verticality is not
possible. Given that the average observed verticality is
already in the range where transmission efficiency drops
off, any oscillation in the verticality results in
unacceptable variations in transmission efficiency.

To date, modifications to the wire and drogque
configurations have been developed using flight-test based
experiment. This has proven to be costly and subsequently
has limited the number of options that have been explored.

A cost effective means to better understand the dynamics and
to explore various alternatives has long been required.

A good model of the time dependent motion of the wire
was crucial to the understanding of the dynamics of a long
wire trailed behind a towplane. The complexity of the
system dictated the use of a digital simulation since the
system could not be described in closed form. To be of use,
the model had to allow for arbitrary forcing function inputs
to be applied to the wire and it had to have provisions for
tracking the locations and force histories for chcsen points
along the wire and allow other quantities to be easily added
and tracked within the same program. Finally, the model's
numerical program had to be both efficient and simple in

order to allow candidate wire/drogue/towplane modifications




to be rapidly coded, added to the simulation and tested. It
was the task of this dissertation to develop an adequate
model of the dynamics of a very long wire towed in a
circular orbit behind a towplane. As was mentioned earlier,
the model was then used to explore several likely candidate
ideas for control of the wire's oscillations. The models
were written using the architecture and parameters specific
to the TACAMO system. This was done because this is the
most current and pressing application of the simulation.
Most model analysis was performed using textbook derived
aerodynamic coefficients for the current TACAMO 3X7 wire and
drogue. Other physical parameters such as dimensions,
weight, center of gravity of the drogue, etc. were measured
using flight-worthy hardware. Note that the requirement
that the numerical models be rapidly reconfigurable implies
that they will be of use on other long towed wire problems.
Where possible, the models were left in the most general
form to facilitate changes.

The modeling of the wire dynamics was attacked in two
steps. First, a program was developed which completely
described the geometry and forces of the wire during steady-
state, unforced conditions. Next, the oscillation
mechanisms were modeled individually and superimposed upon
the initial, steady-state solution. With the model of the
wire dynamics in hand, the possibility of controlling the

oscillations using the towplane to provide the control




inputs at the top of the wire was explored with good
results. The next logical step was to attempt to control
the oscillations using force feedback provided by a
maneuvering droqgue at the bottom of the wire. This
technique had limited success for control of the
oscillations, but proved useful in maximizing the mean

verticality.




III. STEADY-STATE MODEL

A. FORMULATION OF THE WIRE EQUATIONS

The steady-state model was fundamental to the trailing
wire simulation. The steady-state solution provided the
wire geometry and tension necessary as the initial conditior
of the dynamic model, as well as the solution upon which the
dynamic small displacement analysis was superimposed. The
static model developed here was based upon the 1969 Naval
Air Development Center (NADC) static model governing
equations [Ref. 7:pp.6-10]. An understanding of the static
model was crucial to grasping the dynamic model, and so much
of the NADC development of the equations was repeated and
elaborated upon here. The numerical implementation used in
this version of the static model relied upon second order
accurate central differencing techniques. The derivation of
the static solution began by first assuming that the wire
was broken into a number of segments of uniform length egqual
to AS. Second, it was assumed that shear forces were
negligible and that only the tension forces were significant
in the steady-state condition. Third, it was assumed that
the wire was flying in a still, steady airmass with no
winds. Lastly, as was mentioned above, the wire was in a
steady~state condition with a constant circular orbit.

Armed with these assumptions, a model manageable in both

10




analytical and numerical complexity was developed. Figure
3.1 is a graphical representation of the cylindrical
coordinate system that was used for the static model. The

system was modified slightly for the dynamic model.

Figure 3.1: Cylindrical Coordinate System for Static Model

Figure 3.2 depicts the balance of forces upon a segment
of the wire. Applying Newton's second law, the ordinary
differential equation describing the balance of forces on an
incremental section of the wire was written. This ordinary
differential equation is provided as equation (3.1). Note
that each term in equation (3.1) contains AS. AS was thus

canceled from the entire expression.

11




n
v
p———

n-1 W=F;
:Fn=unolon ot upper gridpoint
A'S =grid segment length ? 1=un-lon at lower gridpoint
Am-a'=|nom-| force on wire segment n:v.. —wind vector
Fa='°“' serodynamic force W =-F; =welght of the wire segment

Figure 3.2: Summation of Forces Upon the Wire

dT Fa Fg _m d+_ m —_ 3.1
EAS*— ASAS+ ASAs- ASASEV —EASa ( )

Next, each term of equation (3.1) was considered
individually, starting with the change in tension over the
length of the segment as shown in equation (3.2). 1In
equation (3.3), Esn was defined as the unit vector tangent
to the wire at each gridpoint. Next, define |T,|=T, and ()’
as the derivative with respect to S. Substituting equation
(3.3) into equation (3.2) resulted in expression (3.4).
Applying the product rule to equation (3.4) resulted in

equation (3.5).

12




( g) _d|T,le,,
ds) " ds

——_dR— o, 80— dZ—
Ssn™ g xR a5 %" G5 °x
dT d
(E{TS) =—a—[TReR+TR6 o+ TnZ €y

(g
ds
TRB’) T,,Re’) d =

T2 EeH(T, z')?dS-E;

d —
) =(TnR’)'_é;+TnR’IgeR

(3-2)

(3.3)

(3.4)

(3.5)

Figure 3.3 is a sketch that illustrated the effects of

A6 and its influence upon the unit tangent vectors ey, eg

and eg. Examining Figure 3.3, equation (3.6) was written.

Equation (3.6) was substituted into the equation for

(dE/dS)n, (3.5), resulting in (3.7). Equation (3.7) was

then simplified to obtain equation (3.8).
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A ea =—Ae—é—n

Ae e,
_ T\ Ae=nes,

€q

Figure 3.3: Effects of A8 in Cylindrical Coordinates

4 5=-0'c; (3.6)

( dT) =(T,Rp) €p+(TR'8) ey +(TRO) &4 (3.7)

ds
~(TRO'® e, +(TZY e,

+{(TRB" + TR'0'Jeg +(TZ)) e

In the next step, the jrid structure depicted in Figure
3.4 was examined and used to write the central difference

14




approximation of equation (3.8). Two versions of the
approximation were eventually required as will be explained
at the end of this section. These are provided as equations
(3.9) and (3.10). Several of the first derivative with
respect to S terms were left in equation (3.10). The reason
for not expanding these particular derivatives in terms of
central difference approximations will be seen when the
equations are written in their final forms at the end of

this section.

Figure 3.4: Central Difference Gridpoint Scheme for Change in
Tension

15




ﬁ") I3
das/, AS
Tn._l_(Rnu'Rn) Tn- 1(Rn'Rn-1)
- T +T 1 2
AS AsS _ “"; 2 R 0p.1-60,4 o+
AS 2 2AS R
T . R, *R, en‘l en)_T L Rn+Rn-1 6n en-l. (3.9)
ne3 2 AS n-3 2 AS .
AS
T 1+T 1
3 2 (anl—Rn-l (en°1-en-1) o
2 2AS 2AS o
T (Zrnl-zn)_ 2 Z, Zn-l
R AS =3 AS =
AS
g
as/, AS
1 /
Tn‘—an0_; TH-—;Rn-_%
AS eR+
(3.10)
T Rn‘l*‘Rn e/ +T Rn‘1+Rn e/
mi\T 2 el e3T 2 Jed
AS %
r '
Tm_;Zm% Tn_%zn_% .
AS K

Equations (3.9) and (3.10) were the central difference
approximations of the first term in equation (3.1).
Eventually, central difference approximations were
substituted for all of the terms of equation (3.1). The
three orthogonal components of this vector equation were

then solved as a coupled set.

16




Equations (3.9) and (3.10) included four unknowns (Rj,

®,, Z, and T,) in three components(egp, ey, €;). A fourth

n’ n

compatibility equation was required to complete the problem
statement. Compatibility was established in two separate
ways. In the first case, compatibility was established
using the assumption that the wire was essentially
inextensible with the result that the distance between each
gridpoint remained invariant. The equation in rectangul-~

coordinates was initially stated as in (3.11).
Asz=(Xn—xn-1)2+(yn-Yn-J)2+(Zn—zn~1)2 (3.11)
Equation (3.11) was converted to cylindrical coordinates
in equation (3.12). Expanding (3.12) and simplifying led to
(3.13). Solving (3.13) for 2, left (3.14) which was the

final form of the first compatibility relation.

As? =(RnCOSOn"Rn_1COSOH_1)2 +(Rnsj'neﬂ_}?"'1Sir-le""1)2 (3.12)

+(Zn-Zn-1)2
AS?=R%+ §_1—2Ran_1c0s(6n—6n_l) +(zn-zn_1)2 (3.13)
Zn=Zn_1t¢ASZ _Rf’-Rg‘l+2Ran-1COS(en-en—1) (3.14)

The compatibility equation in (3.14) had the distinct
advantage that it required knowledge of only the previous
gridpoint as well as the R and 8 at the current gridpoint to

calculate 2 It had the disadvantage that it was not

n+l*

17




very accurate in the general case where the curvature of the
wire may account for a lessening of the direct length
between gridpoints. This relaticn had utility for one time
calculations to obtain the first internal gridpoints. The
inaccuracies accrued in a single grid segment were small and
the need to start the computations at the boundary greatly
override their magnitude. The negative case of the ¢ term
in equation (3.14) was excluded since the final steady-state
solution was monotonically increasing in Z from the drogue
to the towplane.

The second formulation of the compatibility equation
made use of the definition of the unit tangent vector
provided in equation (3.3). The expression is rewritten in
(3.15) with the indices as required for this application.
Equation (3.16) is the central difference approximation of
(3.15). The central difference approximation in (3.16) was
second order accurate and more precise than equation (3.14)
but required the two previous gridpoint locations as a

start.

nO-“-' n*—= npne= ne
2 2 2
; Rn.a"an / , (3-15)
R + - )e 1+Z 1=l
ne < 2 n*—z- n~3
2 ; 2 2
( Rney~Rny +R2 enq_en—l) + Znol"zn—x) =1 (3.16)
2As "\ 2AS 2As

18




For the steady-state, no-wind solution, the radial and
vertical coordinates of each gridpoint were constant. § was
defined as the orbit rate of the airplane. The velocity at
gridpoint n was written as a vector cross product, in
equation (3.17). For the case »f constant R, and Z.,
equation (3.18) was written at each gridpoint. Finally, for
steady-state conditions where no wind was allowed, ¢=6n=6,

resulting in equation (3.19).

: .17

V.=y X R_ & )
—_— P 3.18
"/A"‘:Rnween ( )
—_— A .19
Vzelanne een (3 ! )

The magnitude of the relative velocity at each
gridpoint, a term needed later in the derivation, was

expressed by equation (3.20).

m=anéi (3.20)
The central difference approximation of the unit vector,
tangent to the wire at each gridpoint was also required
later in the derivation. Applying a second order accurate
central difference approximation to equation (3.3) resulted

in equation (3.21).
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— (R,,,-R — R w0 VY (Z2.,-2 _.)\—
es"=( mzlAsn_l)‘c”‘+ ﬂ(e;zlss“)e"*( nzlAsnl)e‘ -2

It was desirable to resolve the V vector into

reln

components normal and axial to the wire at each control
point. This was done to facilitate the application of the
characteristic aerodynamic coefficients for a cylindrical
wire as outlined by Hoerner {Ref.10: pp.3.11-3.12,4.5].

Defining v as the component of V parallel to the

relparn reln

wire, equatici (3.22) was written by noting that the

magnitude of v was equal to the dot product of Greh1

relparn
and the wire unit tangent vector and it was coincident with
the unit tangent vector. The dot product was expanded using

(3.19) and (3.21) and then simplified to the form of (3.23).

Vrelparn-—-(vreln ‘ e_sn>e_gn (3.22)
_—_-R20 — (3.23)

Vtelparn._-(vteln * €4n esnzm( nol—en-l)esn

Defining Grelpern as the component of \—Ireln perpendicular

to the flow, (3.24) was written by noting that v was

relpern
the orthogonal component of Greh,remaining after vraumrn
was developed. Equations (3.19), (3.21) and (3.23) were
substituted into (3.24) to derive (3.25) and (3.25) was

simplified to get (3.26).
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Vzelpern= reln_(Vreln : esn-e: (3.24)
“ - (0 _,.-6__
Vrelpern=-Rne ee*(R:Z:e (—L;_A——Su)) (3.25)
Rnei~Rpoy )— ‘(eml-en—l Zpey~Zn-1 |—
[( 245 )*"Fd~2as %'\ z2as /o<
Vz:'elt:‘ern:Rné [Rn (enbl _en-—l)(Rn01-Rn-1)e—R+
2 4452 (3.26)
( 2 fenol e 1) —1)?*-( Rn(eml n- 1)( n+1 Zn-l) e— ]
4AS? o 1A S? x

The magnitude of ?rehmrn, used in several of the later

relationships and shown in equation (3.27), was obtained

from (3.26).

=R 6 [ Fo®n01 701 (Res“Ros)® | RiBny=0,,)"

| relpern

_2R30,.,-0,.,)? “1s

16 AS* (3.27)

16A54
2
Rn(eml en—l)z(zn*l -2

4A5°

2 1
16 AS* = 2

Applying the definition of e,, given in equation (3.21)

and noting that | e, | =1, it was possible to factor (3.28)

from each term and then apply the substitution for | e, | to

obtain equation (3.29).

ert(enu'en-l)z

(3.28)

4As?
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L R0 0,1)° (3.29)

I Vrelpe:nl =Rne\J 4A52

The Hoerner model defined a friction dominated
coefficient, C;, which was a measure of the force component
along the direction of the relative velocity and was defined
using the relative velocity as provided above. 1In addition,
a second coefficient, C,, was defined. This term was
dominated by the significant separation drag associated with
the bluff shape of the cylinder-like wire. C, was a measure
of the aerodynamic force normal to the cylinder and in the
direction of the velocity component normal to the cylinder.
The force was defined in terms of the normal component of
velocity vice the full relative velocity. C, was a measure
of what would be called lift in the classic sense as well as
form and separation drag, while C; was a measure of the skin
friction drag and was always oriented in the direction of
the relative flow. Both coefficients used the diameter of
the cylinder as the characteristic length, however, as
mentioned above, the C¢ coefficient used the full relative
velocity to define the coefficient and the C, coefficient
used only that portion of the relative velocity normal to
the wire. A third coefficient will be introduced later,
which will account for the possibility of a sideforce

perpendicular to the wire and the steady-state ep, ey plane.
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Using both of these coefficients (C, and C¢), the total
aerodynamic force upon a segment of the wire was
characterized as in equation (3.30). Note that this is not
a magnitude but a true force vector. Substituting equations
(3.26) and (3.29) into (3.30) resulted in (3.31). Finally,

rearranging (3.31) provided equation (3.32).

Vrelyezn D C'D"' (3 . 30)

Epnl relnl reln D Cf

Fan_1
Ta; -2-P IVzelpernI

—F—:;_ 1 A _ erz(enu'enq)z N Rn(emx'en-1)(Rm1'Rn—1)—
E—(EP”DCD)R“G Jl 4AS? (R9)!1 4AS? ©r

Ellos Ol Zalle) - 15 pfr 0)'%

(3.31)

2
-1 R (eml -1 Rn(enq n- 1 L -Rn-l)—
= C.Re < e
PP J 4AS? 4AS? k

2
-CI+C4 1- Rn(entl_en-l) (en~1 e AL -1 ea
4A5? 4A5?

N

+% an(Rné)z
2

. - 2
+%anCc(Rn9)2RnJ 1- Rn(end en-i (enu n- 1)( n+1” n—1)e—k

4A5°2 4A 52
(3.32)

Equation (3.32) was the finite difference approximation
of the second term in equation (3.1). The remaining terms
were derivable in a straight forward manner. The right hand
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side of equation (3.1) was the inertial term of the wire
segment. For the static case, the inertial force was due
solely to the centrifugal force. Further, the force was
constant at each wire segment and dependent solely upon the
tangential component of velocity, radial position and mass.
Defining p=mass per unit length and noting that in steady-
state the tangential component of velocity at each gridpoint

was equal to the magnitude of v as in equation (3.20)

reln

allowed equation (3.33) to be stated.

Frn - [Vrelsz (3.33)

As MR, CR TR R

n

The final term in equation (3.1) was the contribution
due to the weight of the wire segment. The equation was
again in terms of per unit length and g was defined as the
acceleration due to gravity resulting in equation (3.34).
%;-pgg; (3.34)

All of the components of equation (3.1) were thus
formulated. It was then possible to substitute these
components into (3.1), to derive a single vector equation.
This equation consisted of three orthogonal vector
components which could be solved simultaneously. Performing
the substitution and using (3.9) vice (3.10) allowed

equations (3.35) to (3.37) to be immediately written. The
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compatibility relation, equation (3.17), was rewritten in

(3.38) for convenience.

As? 2 2AS
1 A \2 sz(eml'en 1) Rn(e +1” 1)(Rn01 -1)
L C{R 9 1- n n n- - ezR
*3PaP A n )\l 4A5? 4As?
(3.35)
Tn¢_;(Rn01+Rn)(en~1_en)-Tn-.%(Rn+Rn-1)(en-en-1)
2A52
(Tno_l +Tn-l)(Rn‘l _Rn-l)(en+1-en-1)
+ 2 2 +
8AS?
' 2 2 2
1 A\2 Rn(eml'en-l)z( Rn(eml'en—l) ]
= R O)-Co+Cpaj1- -11]=0
2p"q B)|-Cr ”J 4A 5?2 4452
(3.36)
Tn._l(zml—zn)_Tn-_l.(zn-zn-l)
2 2 +
As?
1 A\2 Rn( n+1” n 12 ( ne1” n 1)( nel” nJ) -
= C4R O)' R .| 1~
2 PP dR:S) ”\J 4A5? ( 4A5? kg=0
(3.37)
2 2
(Rn'l_Rn-l) *Rz( 0,.076n, 2+ Zml-zn—1) =1 (3.38)
2As "\ 2As 2AsS
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Using (3.35) to (3.37) with the AS compatibility
equation in the form of equation (3.14) for the first
internal gridpoint and (3.38) for all subsequent gridpoints,
there existed four finite difference equations in the four

unknowns R,, 8,, Z, and T,. The task was then to devise a

ns
numerical scheme to solve these coupled finite difference
equations along the entire wire. The logical choice was to
iteratively solve for Rp,;, 6,,;, Ty, and 2,,, using the
four equations and knowledge of the location and tensions of
the previous two gridpoints. Examination of the three
equations above, as well as (3.38), indicated that there
were numerous formulations of the equations that would allow
the T, .., Rpy1s Op4y and Z,,; to be explicitly or implicitly
broken out from the equations. Gerald and Wheatley
explained that a sufficient condition for convergence of
coupled equations using the iterative technique was that the
sum of the partial derivatives with respect to each variable
had to be less than one for each equation [Ref 11l:pp.142-
143]. Note that this was a sufficient and not a necessary
condition, which was fortuitous since there were no
formulations found which fit this requirement. This led to
a trial and error search through the various formulations.
Upon examining (3.35) through (3.37) and (3.38), an obvious
candidate was to solve (3.35) for R;,;, (3.36) for T,,.,
(3.37) for Z,,, and (3.38) for O,,, as in equations (3.39) to

(3.42). This set of equations had the obvious advantage of
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being entirely explicit. Examination of this equation set
is representative of the problems with convergence
instability encountered in the other combinations which were
attempted. The difficulty with this set lies in equation
(3.40). Note that both the terms in the denominator of the
multiplicative factor were small and when their sum was
inverted, the multiplicative factor became very large, on
the order of around 500 for a typical scenario at the bottom
of the wire grid. This meant that small errors in the
variables within the bracketed sections were greatly
amplified. This amplification drove the set of equations

unstable for most scenarios.

R .= 1
n+1
T .1
ne = . e "e 2 R e -e )
2 +i c{r © 2\11_ Rn( n+1 n—l) n( n+1 Yn-1
AS? 2 Pal dFa0) 4A5? 4A5?
i A L (TT) LN
As? 12 245
2
1 )2 _ Rn(ervl—en-l)2 Rn(end_en-;lLRn-l - N2
+3anCJRn9) \Jl aAS? e uo2R ]

(3.39)
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) 2A5°
(Rnol +Rn)(en«1 ‘en) + (R"‘l —R”'l)(e"‘l —en'l)

4
Tn- _;(Rn+Rn-1)<Bn-en-1) Tn— %(le _Rn-l)(en‘l -en-l)

2A 52 8A S2
1 212 R70,.,-0,.,)%| R3®,.,-6,.,)? ]
-= rROVl-c.+Cc|1- n+*1 " Yn-1 nel Tn-l) _q 4
2 PuDR | -C DJ 4AS? 4A5? i
(3.40)
Zpan= 1
To-d : RYD_..-0__ ) ©,.,-0
2 *_;L_p DCC(R 6)2R 1- n( n+l n—1) ( n+1 n—1)
Asz 27" " 4A5? 4AS?
Tn0—12n+Tn-_1(Zn_Zn-1)
[ 2 2
As?
1 -2 Ry0,.,-0,.1)? (0,.,8,.1)Z,,
+=p DC/RO)'R,|1-2nl n nrl_n-ljncl,
2 PrPCAR:O) "J 442 4AS? 4
(3.41)
1
81017051+ V44 5°~(Rpey ~Ro_)* ~(Zpes ~Zp-a)’ (3.42)
n

The problem of iterative convergence was solved by
changing the set of convergence variables. Equations (3.35)
through (3.37) were rewritten using equation (3.10) vice
(3.9) 1in equations (3.43) through (3.45). Then a new set
of convergence variables were defined as in equation (3.46)

where the n+% index was used for illustration.
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/ !
T 1R -T 1R T +T 2
( _: m% "2 "-%]'( n.% "'%]}24 enu"en'l)

AL 2 2AS
1 2 Rp(0,.,-0,,)° ( Ry0,.,-0, YRy "R _1)) .
+ = C Re - n n n n n - 62R
2 PRy )\ 4452 4A5? o
(3.43)
Rn‘1+Rn / — Rn+Rn-1) /
e R G i
As?
<Tn+_1 + Tn- 1 )(Rn*l _Rn—l)(en*l —en-l)
+ 2 2 +
8AS?
1 A2 ern@ 01-611-1)2[ erz(enq_end)z ]]
=P AR.8)[-Cp+Cpy| 1~ Z -1([=0
zp”D( ) |~C ”\f 4AS? 4A 82
(3.44%)
(Tn‘lzl l_Tn_IZ/ 1)
2 "3 PR +
AS
1 3t Ra®. -6->2(<0 e17003)(Zn01 "2 -))
4 CRBR 1- nel n-1 n+l n-1 nel n-1;) | _ =0
2 Pl dR:0) "\} 4AS? 4AS? g
(3.45)

29




Equations (3.47) through (3.49) were developed by

substituting (3.46) into (3.47) through (3.49).

Tno_1+Tn-i e -e 2
= 2 2 n+l n-1
Aned A"-%*[( 2 ]R"( 285 )
1 < \2 Rp(8,.,-0 _1)2( Ry0,.,-0, )(Roer~Ro))
-=p,DCIR O 1- n 2 n n n n7i |-uB2R_1AS
2p"D o )\J 4AS? 4AS? BORy ]
(3.47)
(Tno.l +Tn-i)(Rnu "Rn—l)(eml_en-l)
B .,1=B_ 1-{ 2 2 +
Atz m3 8AS?
1 2 Rﬁ(ﬁ.~6-)2(R§(9.-9-)2 )1
= Re _C+C 1- n+l n-1 n+l n-1 -1 ]AS
2p”D( )|-C "\J 4AS? 4A 52 ]
(3.48)
Cn“%‘:cn_%+

1 2 Rp(0,.,-8,.1)° (e‘-e_)(z,-z_))
[-= c{R OV'R . .I1- n+l “n-1 ns1_ “n-1)\“ne1 “n-1} |, 1AS
2 PrPCARS) ”\J 4AS? 4A5? ha

(3.49)
Equations (3.47) through (3.49) were the iterative
equations in their implemented form. Equation (3.50)
illustrated the relationship of the variables defined in
(3.46) to the unit tangent vector and allowed a simple
solution for T,,, given A.,,, Bp,, and C,,; in equation
(3.51). A central difference approximation of the primed

derivatives with respect to S listed in equation (3.46)
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allowed for the iterative equation variables to be used to

solve for R 6,,; and Z,,, in equations (3.52) through

n+l7’

(3.54) which were then used along with T,,, in the next

iteration.

2 2 _
AnO—;*‘Bn‘—;—*’Czn‘_;-
3.50
R e T
A\ "tz P\ U7 Pt Mg\ M Z
- 2 2
Tn._;-J;n‘31+Bn‘_;+Czn.% (3.51)
Am_1AS
Rpuy=Rpt——= (3.52)
n+3
BmiZAS
6,.,=0,+ 2 (3.53)
e i Tn*i(Rn‘l‘FRn)
Cm_1AS
Z =2t — (3.54)

Equations (3.47) through (3.49), (3.52) through (3.54)
and (3.51) are solved iteratively at each internal

gridpoint. As mentioned above, and as seen in the
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equations, a solution at the two previous gridpoints are
required in order to solve the current gridpoint. This is
only a problem when first starting the algorithm at the
bottom of the wire. The first internal gridpoint was solved
by defining the boundary condition of this coupled set of
equations in terms of moment and force equilibrium at the

drogue attachment point.

B. FORMULATION OF THE DROGUE EQUATIONS

Figure 3.5 is a depiction of the forces and moments upon
the drogue in the vertical plane. Using this diagram, the
moments around the nose of the drogue were summed. The nose
was chosen as a reference point since it allowed elimination
of the tension term and enabled the resulting equation to be
solved without knowledge of the next gridpoint. The moment
summation is provided in equation (3.55) where L, and D
were the lift and drag of the drogque, MAC, was the moment
around the aerodynamic center, a, was the angle of attack of
the drogue, W, was the drogue weight and cqg and ac were the
center of gravity and aerodynamic center of the drogue

respectively.

Y M=-L, ac cos(ay)+w, cg cos(ap)+MAC,=0 (3.55)
It was assumed that the drogue coefficient of dragqg, Cppr
and moment coefficient, Cuacps Were approximately constant

and that the drogue lift curve slope, Ciapr conformed to the
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Figure 3.5: Forces and Moments Upon the Drogue in Vertical
Plane

model in equation (3.56). Expanding the components of
equation (3.55) resulted in (3.57) to (3.59), where n
equaled the drogue gridpoint number, S, was the drogue
maximum cross sectional area and LEND was the length of the
drogue as seen in Fiqure 3.5. Substituting these relations
into equation (3.55) resulted in equation (3.61), a solvable

transcendental relation in aj.

(3.56)
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1 l A .
qn=3an§91n=Epn(Rne)z (3 57)

Lp=Crap®pdnSp (3.58)
Dp=Cpp®pa,Sp (3.59)
MAC,=Cyp p TS LEND (3.60)

~Crap®pdnSy ac cosa,~Cpp@,Sp ac sine,+W, cg cosa+Cy,d,S, LEND=0
(3.61)

A very similar technique was applied in the horizontal
plane to determine the drogue sideslip angle, B,. Figure
3.6 is a depiction of the forces and moments upon the drogque
in the horizontal plane. The summation of forces in the
horizontal plane about the nose of the drogue was written in
equation (3.62) by examining Figure 3.6 and noting that Fy,
was the centrifugal force upon the drogue mass and that ASFD
was the aerodynamic side force due to B,. Making similar
substitutions as were made in the summation of forces in the
vertical plane and again noting that n was the drogue
gridpoint number. resulted in equation (3.63). ASFD and Fg,
were required later, where ASFD was as defined in equation

(3.64) and F;, as in (3.65).
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Figure 3.6: Forces and Moments Upon the Drogue in the
Horizontal Plane '

Y M,.=F,,-ASFD+MAC, (3.62)
Wpaso
-56 R, cg cosP,~CrupBpd,Sp ac cosPp+CyncpQ,SpLEND=0
(3.63)

ASFD=Cp, B pd,Sp (3.64)
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W0%R, (3.65)
o g

The horizontal components of the forces upon the drogue
in their vector form were rewritten in equation (3.66) by
re-examining Figure 3.6 and remembering that the drogue was
in a steady-state orbit. For static force equilibrium, the
tension magnitude at the drogue had to equal the magnitude
of the vector sum of all of the forces listed in (3.66).
The tension at gridpoint 1 was thus as written in equation
(3.67). Only the tension magnitude as in equation (3.68)
was required.

Ly=Lpey
Dp=-D,€4
Wy=-Wper (3.66)

Rm‘Fh;;__
ASFD=-ASFDe,

T, =(F1p~ASFD)€~Dy€e*(Lp=Wp) €y (3.67)

T, =(Fip~ASFD)+ D} +(Ly=Hy)? (3.68)

It was assumed that the forces upon the first wire
segment were small comp